Solution structure of the apical stem–loop of the human hepatitis B virus encapsidation signal
نویسندگان
چکیده
Hepatitis B virus (HBV) replication is initiated by HBV RT binding to the highly conserved encapsidation signal, epsilon, at the 5' end of the RNA pregenome. Epsilon contains an apical stem-loop, whose residues are either totally conserved or show rare non-disruptive mutations. Here we present the structure of the apical stem-loop based on NOE, RDC and (1)H chemical shift NMR data. The (1)H chemical shifts proved to be crucial to define the loop conformation. The loop sequence 5'-CUGUGC-3' folds into a UGU triloop with a CG closing base pair and a bulged out C and hence forms a pseudo-triloop, a proposed protein recognition motif. In the UGU loop conformations most consistent with experimental data, the guanine nucleobase is located on the minor groove face and the two uracil bases on the major groove face. The underlying helix is disrupted by a conserved non-paired U bulge. This U bulge adopts multiple conformations, with the nucleobase being located either in the major groove or partially intercalated in the helix from the minor groove side, and bends the helical stem. The pseudo-triloop motif, together with the U bulge, may represent important anchor points for the initial recognition of epsilon by the viral RT.
منابع مشابه
The apical stem-loop of the hepatitis B virus encapsidation signal folds into a stable tri-loop with two underlying pyrimidine bulges.
Reverse transcription of hepatitis B virus (HBV) pregenomic RNA is essential for virus replication. In the first step of this process, HBV reverse transcriptase binds to the highly conserved encapsidation signal, epsilon (epsilon), situated near the 5' end of the pregenome. epsilon has been predicted to form a bulged stem-loop with the apical stem capped by a hexa- loop. After the initial bindi...
متن کاملThe encapsidation signal on the hepatitis B virus RNA pregenome forms a stem-loop structure that is critical for its function.
Hepatitis B virus (HBV) is the type member of the hepadnaviridae, small enveloped DNA viruses that replicate through reverse transcription of an RNA intermediate, the pregenome. This reaction occurs usually inside the viral nucleocapsid, the assembly of which requires specific interactions between multiple copies of the core protein, the viral replication enzyme (P protein) and the RNA pregenom...
متن کاملEvidence for Multiple Distinct Interactions between Hepatitis B Virus P Protein and Its Cognate RNA Encapsidation Signal during Initiation of Reverse Transcription
Replication of hepatitis B virus (HBV) via protein-primed reverse transcription is initiated by binding of the viral P protein to the conserved ε stem-loop on the pregenomic (pg) RNA. This triggers encapsidation of the complex and the ε-templated synthesis of a short P protein-linked DNA oligonucleotide (priming) for subsequent minus-strand DNA extension. ε consists of a lower and upper stem, a...
متن کاملDistinct families of cis-acting RNA replication elements epsilon from hepatitis B viruses
The hepadnavirus encapsidation signal, epsilon (ε), is an RNA structure located at the 5' end of the viral pregenomic RNA. It is essential for viral replication and functions in polymerase protein binding and priming. This structure could also have potential regulatory roles in controlling the expression of viral replicative proteins. In addition to its structure, the primary sequence of this R...
متن کاملThe bovine leukemia virus encapsidation signal is composed of RNA secondary structures.
The encapsidation signal of bovine leukemia virus (BLV) was previously shown by deletion analysis to be discontinuous and to extend into the 5' end of the gag gene (L. Mansky et al., J. Virol. 69:3282-3289, 1995). The global minimum-energy optimal folding for the entire BLV RNA, including the previously mapped primary and secondary encapsidation signal regions, was analyzed. Two stable stem-loo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006